A diphthalocyanino-dehydro[12]annulene

Michael J. Cook* and Martin J. Heeney

School of Chemical Sciences, University of East Anglia, Norwich, UK NR4 7TJ. E-mail: m.cook@uea.ac.uk

Received (in Cambridge, UK) 6th March 2000, Accepted 11th April 2000

A diphthalocyanino-dehydro[12]annulene, synthesised by oxidative coupling of a dialkynylphthalocyanine, has been characterised by mass spectrometry and UV–VIS spectroscopy and shown to undergo thermal oligomerisation.

Phthalocyanines (Pcs) are important functional materials, their 18π electron system providing the basis for their characteristic photophysical, optoelectronic and conductiometric properties.¹ More complex structures such as covalently linked binuclear Pc structures are attracting attention because of interesting effects arising from the further extension of the π conjugation.² Formally planar structures in which two Pc cores share a common benzene ring have been characterised satisfactorily³ and applications of palladium coupling reactions have provided access to alkynyl Pcs4-6 of which some monoalkynyl derivatives⁶ have been coupled to give both ethynyl and butadiynyl linked Pcs. These coupling methods are here applied to the synthesis of the first example of a diphthalocyanino-dehydroannulene 1 which is highly substituted to promote solubility in organic solvents. A report that annulenes are polymerisable at a diyne unit7 indicates that phthalocyanino-dehydroannulenes could act as useful precursors for the synthesis of novel phthalocyanine network polymers. Preliminary studies of the thermolysis of 1 are described.

The synthesis of **1** is summarised in Scheme 1. The principal features are that the dehydroannulene ring is constructed in the last stage, requiring a non-uniformly substituted Pc as precursor. The latter is the dibromo derivative **2**, \dagger obtained by a conventional mixed condensation of 3,6-didecylphthalonitrile⁸ and 3,6-dibutoxy-4,5-dibromophthalonitrile⁹ (ratio 6:1). Stille

Scheme 1 Reagents and conditions: i, $Bu_3SnC\equiv CH$, $Pd(PPh_3)_2Cl_2/Pd(PPh_3)_4$; ii, $Cu(OAc)_2$, THF-pyridine-MeOH.

achieved by copper(II) acetate mediated oxidative coupling in dry THF-pyridine-methanol (1:1:0.25). The reaction was investigated under various conditions, its progress monitored by visible region spectroscopy. Fig. 1 (top) shows the spectrum of 3, line (a), with the visible region (Q-band) absorptions at 698 and 729 nm. The spectrum of the reaction mixture after 20 min at 50 °C under an argon atmosphere shows a broadened spectrum, line (b), with prominent peaks at λ_{max} 701 and 756 nm. After further time, there is a gradual appearance of a new peak at 822 nm, whose intensity maximises after 48 h. This same absorption band envelope was also obtained in a separate coupling reaction of 3 (39 mg) after 8 h at 80 °C, Fig. 1 (top), line (c). The crude reaction products were filtered through silica (eluent: light petroleum (bp 40-60 °C)-THF, 9:1) to remove copper salts and polymeric material. MALDI-TOF MS of the filtrate gave a base peak corresponding to 1 with smaller peaks attributable to a cyclic trimer and cyclic tetramer. Size exclusion chromatography failed to separate the mixture. However, purification by repeated column chromatography over silica (eluent: light petroleum (bp 40-60 °C)-THF, 19:1) afforded 1 as the major fraction (9.5 mg); MALDI-TOF showed an isotopic cluster at m/z 3206 corresponding to a singularly charged molecular ion. Scanning to higher mass gave no indication of higher molecular weight species. The high resolution FT-ICR MS of 1 using electrospray ionisation in THF confirmed the structure. The base signal corresponds to the doubly charged M^{2+} ion at m/z 1601.1211 (requires 1601.1235),

coupling,¹⁰ converted **2** into **3**.[†] The conversion of **3** into **1** was

Fig. 1 UV–VIS spectra: (top) line (a), compound **3** as a solution in toluene; line (b), spectrum (toluene) of oxidative cross-coupling product from **3** after 20 min at 50 °C; line (c), the oxidative cross-coupling product from **3** after 8 h at 80 °C. (Bottom) spectrum of **1** as a solution in cyclohexane, showing the split Q-band. There is also evidence of splitting of the Soret band in the UV region.

isotopic distribution showing a mass difference between each peak of 0.5 u. Signals are also present for M⁺ at m/z ca. 3206 (poorly resolved) and M³⁺, m/z 1067.4227 (requires 1067.4157). The spectrum also indicates the presence of aggregated structures. A peak cluster at m/z ca. 2138 corresponds to a triply charged two molecule aggregate of **1** and a very weak peak at m/z ca. 2400 corresponds to a quadruply charged trimeric aggregate.

Aggregation is also apparent from the ¹H NMR spectrum. Thus unlike the spectra of **2** and **3**, the spectrum of **1** (4.5 mg per 0.5 ml benzene-d₆) shows broadening of the signals for the aromatic protons, and the $-OCH_2$ and benzylic protons. Addition of pyridine-d₅ failed to inhibit aggregation at this concentration. Aggregation of **1** implies the possibility that π - π interactions lead to a supramolecular structure involving Pc units stacking to encapsulate a π electron rich channel formed by the dihydroannulene units. At higher dilution, (*ca.* 0.9 mg per 0.5 ml benzene-d₆), and at 40 °C the ¹H NMR spectrum is better resolved. Apart from aliphatic protons, there are overlapping signals for the aromatic protons, an 8 proton triplet at δ 4.91 (OCH₂ protons), a multiplet for 8 benzylic protons at δ 4.76 and a 16 proton multiplet for the remaining benzylic protons at δ 4.62.

The Q-band absorption for **1** is split, λ_{max} 822 and 691 nm, Fig. 1 (bottom). This is expected for metallated macrocycles of lower symmetry than \hat{D}_{4h}^{11} and is indeed observed for compounds 2 and 3. However, the splitting is much more significant for compound 1. A sample of 1 was heated on a hotstage and analysed by visible region spectroscopy. After heating for 5 min at 220 °C, the solution phase spectrum of the material shows reduction in absorbance of the two main components of the Q-band and growth of a broad band between them. Continued heating gives a sample whose spectrum shows an irreversible disappearance of the original bands and a featureless band envelope in the region 680-820 nm. The MALDI-TOF spectrum of the product shows broadened high molecular mass clusters corresponding to multiples of m/z 3206, the highest centered at m/z ca. 19200. This provides a clear indication that oligomerisation has occurred. The potential for developing large and potentially well organised phthalocyanine networks from these and related materials is under investigation

We thank EPSRC for a studentship (M. J. H.), the EPSRC Mass Spectrometry Service at Swansea for FAB mass spectra, Ms V. Boote at University of Manchester for running MALDI-TOF mass spectra, and Dr Helen Cooper at Warwick University for providing FT-ICR mass spectra.

Notes and references

† Compound **2**: found C 70.40, H 8.90, N 6.30. $C_{100}H_{150}N_8O_2Br_2Ni$ requires C 70.04, H 8.82, N 6.53%. ¹H NMR (300 MHz, C_6D_6): δ 7.82 (s, 4H), 7.81 (s, 2H), 4.75 (t, 4H, *J* 7.5 Hz), 4.66–4.57 (3 overlapping t, 12H), 2.34–2.17 (m, 16H), 1.92–1.11 (m, 88H), 0.95 (t, 6H, *J* 7.4 Hz), 0.87–0.80 (m, 18H); UV–VIS (3.68 × 10⁻⁶ M in toluene, log ε) 1 716 (5.10), 698 (5.03), 636 (4.39) nm; MS (FAB): isotopic cluster at *m*/*z* 1716 [M + H]⁺; requires 1715.84.

Compound **3**: found C 76.99, H 9.56, N 6.98. $C_{104}H_{152}N_8O_2Ni\cdotCH_3OH$ requires C 77.03, H 9.60, N 6.84%. ¹H NMR (270 MHz, C_6D_6): δ 7.81–7.78 (m, 6H), 4.83–4.76 (m, 8H), 4.61–4.56 (m, 8H), 3.53 (s, 2H), 2.33–2.21 (m, 16H), 1.93–1.11 (m, 88H), 0.96 (t, 6H, J = 7.4 Hz), 0.92–0.81 (m, 18H).UV–VIS (2.51 × 10⁻⁶ M in toluene, log ε) 1 729 (4.99), 698 (4.88), 666 (4.44), 628 (4.23) nm; MS (FAB): isotopic cluster at m/z 1606 [M + H]+, requires 1605.1.

- 1 See, for example: N. B. McKeown, *Phthalocyanine Materials: Synthesis, Structure and Function*, Cambridge University Press, Cambridge, 1998.
- 2 G. de la Torre, P. Vázquez, F. Agulló-López and T. Torres, J. Mater. Chem., 1998, 8, 1671.
- 3 D. Delièvre, O. Damette and J. Simon, J. Chem. Soc., Chem. Commun., 1993, 939; N. Kobayashi, H. Lam, W.A. Nevin, P. Janda, C. C. Leznoff, T. Koyama, A. Monden and H. Shirai, J. Am. Chem. Soc., 1994, 116, 879; N. Kobayashi, Y. Higashi and T. Osa, J. Chem. Soc., Chem. Commun., 1994, 1785; G. de la Torre, M. V. Martínez-Díaz, P. Ashton and T. Torres, J. Org. Chem., 1998, 63, 8888; G. de la Torre, M. V. Martínez-Díaz and T. Torres, J. Porphyrins Phthalocyanines, 1999, 3, 560.
- 4 D. S. Terekhov, K. J. M. Nolan, C. R. McArthur and C. C. Leznoff, J. Org. Chem., 1996, 61, 3034; H. Isago, D. S. Terekhov and C. C. Leznoff, J. Porphyrins Phthalocyanines, 1997, 1, 135; C. C. Leznoff, Z. Li, H. Isago, A. M. D'Ascanio and D. S. Terekhov, J. Porphyrins Phthalocyanines, 1999, 3, 406.
- 5 H. Ali and J. E. van Lier, *Tetrahedron Lett.*, 1997, 38, 1157.
- 6 E. M. Maya, P. Vázquez and T. Torres, *Chem. Commun.*, 1997, 1175;
 E. M. Maya and T. Torres, *Chem. Eur. J.*, 1999, 5, 2004.
- 7 Q. Zhou, P. Carroll and T. Swager, J. Org. Chem., 1994, 59, 1294; K. P. Baldwin, A. J. Matzger, D. A. Scheiman, C. A. Tessier, K. P. C. Vollhardt and W. J. Youngs, Synlett., 1995, 1215.
- 8 N. B. McKeown, I. Chambrier and M. J. Cook, J. Chem. Soc., Perkin Trans. 1, 1990, 1169.
- 9 M. J. Heeney, PhD thesis, University of East Anglia, Norwich, UK, 1999.
- 10 D. E. Rudisill and J. K. Stille, J. Org. Chem., 1989, 54, 5856.
- 11 N. Kobayashi and H. Konami, *Phthalocyanines: Properties and Applications*, ed. C. C. Leznoff and A. B. P. Lever, VCH, 1996, vol. 4, pp. 343–404.